
UCRL-CONF-203192

Practical SQE on a Large
Multi-Disciplinary HPC
Development Team

J. Robert Neely

March 26, 2004

International Workshop on Software Engineering for High
Performance Computing System (HPCS) Applications
Edinborough, United Kingdom
May 23, 2004 through May 28, 2004

Disclaimer

 This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States Government or the University of California,
and shall not be used for advertising or product endorsement purposes.

UCRL-CONF-203192

Practical Software Quality Engineering on a Large Multi-
Disciplinary HPC Development Team

Rob Neely
Lawrence Livermore National Laboratory, Livermore, CA, U.S.A.

rneely@llnl.gov

Position Paper for the
International Workshop on Software Engineering for High Performance

Computing System Applications

1. Introduction

In this paper we will discuss several software engineering
practices that have proven useful in a large multi-
disciplinary physics code development project at
Lawrence Livermore National Laboratory.

In the project discussed here, as with many large scale
efforts in HPC scientific computing, we have had to
balance the competing demands of being a stable
"production" code that our user base can rely on with
being a platform for research into new physics, models,
and software architectures. Much of this has been learned
through necessity and experience. Likewise, much of it
has been learned through interactions with other similar
projects and hearing of their successes, and tailoring their
ideas to our own requirements.

The ideas presented here are not meant to necessarily
transfer to other environments with different needs. It is
our belief that projects need to be given large latitude in
defining their own software engineering process versus a
prescribed a solution. However, the ideas presented here
are hopefully high level and general enough that we hope
other projects might find some inspiration and adopt
similar methods if it is to their benefit, much as we have
done through the years.

2. Project Background

This project involves a code which has been around in one
form or another since the mid 1980's, at which time it was
run primarily on the Cray vector architectures. In the
early to mid 1990's, an extensive rewrite was undertaken
with several primary goals: 1) Porting to MPP
architectures and a message passing base, 2) rewriting the
high level architecture in a more modern language with
better support for data structures and dynamic memory,
and 3) building a code which could act as a framework for

implementing new physics while not adversely disrupting
the core validated physics. The team simultaneously grew
in size from a handful of people to a large multi-
disciplinary team consisting of code physicists, engineers,
chemists, computer scientists, and analysts.

For many years our laboratory, software quality
engineering has been something that is left up to the
individual projects to define. On this particular project, we
took the attitude that anything that made our lives easier
by a) automating (and thus simplifying) the workflow, b)
reducing the number of phone calls from our users, c)
making it easier to add new capabilities to the software, or
d) generally allowing us more time to work on "fun stuff",
was considered good software engineering. Processes
which seemed arbitrary or generally not applicable to our
environment were not considered, or ejected. As a result,
we have been steadily working toward a software
workflow process which we believe is (asymptotically)
approaching optimal for our particular environment.
Below we will touch on just a few of the areas where we
have seen a positive impact.

3. Regression Testing

The value of regression testing (testing answers produced
by a given version against a set of validated baselines)
first becomes apparent to developers when they discover
that someone else has inadvertently broken their software.
Although frustrating, it's hard to cast blame when the other
person can simply say "But how was I supposed to know -
you never added a test problem which would let me know
I broke it!". So if for no other reason, regression testing
makes for a good defensive strategy!

On our project, we are in the process of defining several
levels of regression testing, all under the framework of a
set of customized scripts which will automate the process.
These are all designed to catch bugs as early in the
development cycle as possible. They are:

This work was performed under the auspices of the U.S. Department of Energy by the University of
California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

UCRL-CONF-203192

• "Smoke" test
o Prevent bugs from ever making it onto

the integration branch
• "Overnight" test

o Catch bugs missed by the smoke test
within 24 hours

• "Promotion" test
o Catch bugs before they make it into a

public release of the software

Our most often run test suite is the aforementioned
"smoke test". The main purpose of this test is to make sure
that no one is allowed to commit a change into our source
code repository which would break something that worked
prior to the commit. The smoke test suite is a large set of
problems (> 100) that attempt to maximize coverage in a
minimal amount of time (preferably 30-60 minutes total,
or 10-60 seconds each) but running small, low resolution,
fast running “toy” problems. We keep a set of baseline
answers in the form of a restart file from which we do a
bitwise comparison the end of each run. If the answers
have changed for any reason, this must be documented
and the baseline answers in the repository replaced. The
smoke test can run some problems in parallel, although
we're usually limited to just several processors of a shared
memory workstation for simplicity.

We have stressed the importance of bitwise comparison
(versus a differencing that allows for relative or absolute
tolerances) in the smoke test because we have found that
often many bugs manifested themselves in very seemingly
minor ways, and could easily be either brushed off as
"round-off error" without careful study, or hidden by
tolerances. So although we don't require developers to
always be able to bitwise reproduce answers (as obviously
this would preclude desirable activity such as algorithm
improvement or certain performance enhancements), we
do want them to understand and document the reasons for
any changes, no matter how minor. Furthermore, bitwise
comparison of binary restart dumps are made easier
through the usage of a portable binary format (similar to
HDF5 [1] in functionality) which provides a diff tool from
which we can easily filter out differences that do not
matter, such as timestamps or code version numbers
embedded in the file.

In a perfect world, our smoke tests would catch all bugs
being introduced into the code. However, some bugs just
will not manifest themselves in small, short running
problems. Thus, our second tier of testing (what we call
our "overnight" test) adds another layer of test problems
designed to as quickly as possible (within 24 hours of a
commit) determine if a bug has been introduced to the

repository. It is different from the smoke test suite in two
primary ways: First, it runs for a longer time, as unlike
the smoke test, no one is typically waiting on the results to
continue the process of updating the code. As the name
implies, we run this suite of jobs during off-hours, and a
report is waiting for us each morning if a failure has
occurred. Secondly, the tests tend to stress more
integration of multiple features of the code. They are
often tests contributed by our users, or designed by
developers specifically to stress attributes of the code that
make for a longer runtime. For these tests, we check for
differences in a representative set of values (e.g. min/max
coordinate extends, min/max pressure, etc...) for
comparison with baseline results.

Our final tier of testing is our "promotion" test suite. The
promotion test suite consists of a set of problems that
typically will take days to run, and are large scale parallel
multi-physics problems. Our project supports a concept of
multiple branches of development (see "configuration
management"), and this test is a final check to make sure
that typical user problems which ran on past stable
versions of the code continue to run. Likewise, this
indicates that the months of new development is ready for
release to users.

In all cases, we try to continuously improve the quality of
each suite. If a bug snuck into the repository that should
have (or could have) been caught, we will either add a
new test problem or modify an existing test problem to
one of the suites to make sure it does not happen again.

4. Configuration Management

A well-defined software configuration management
(SCM) system has been key to both defining and
enforcing our software process workflow. At the core of
our SCM system is the concept of maintaining multiple
simultaneous branches of the code. Inspired by projects
such as the Linux kernel which maintain a stable bug-fix
branch while simultaneously doing major development on
a different branch - this technique has been an important
mechanism for keeping a stable code base for our users
while also allowing them access to the latest features in
the form of a beta version of the code. We typically aim
to release a new "main" (stable) version of our code
approximately every 6-9 months, although in reality the
decision is made based on a combination of what we find
our users using (i.e. have they all jumped from the main to
beta version?), and what “feels right” based on project
management decisions. In the interim, the developers are
working daily on our "maindev" branch to keep it as
stable as possible, while applying bug fixes to the main
branch as necessary.

UCRL-CONF-203192

Before creating a new main branch, we feature freeze the
maindev version and focus entirely on reducing bugs and
enhancing stability (this is where we run our complete set
of "promotion" tests). This phase is called "premain", and
can last anywhere from 2-6 weeks. During this time, we
begin the next maindev branch - which effectively leaves
us with three simultaneous branches of development: the
main stable branch, the premain branch (the candidate for
the next main release), and the next maindev branch.

For development where we anticipate potential large
disruption to the code base, we try to get those in early on
a new maindev branch so as to give ourselves plenty of
time to work out the potential bugs before users begin
demanding the features on that branch, and thus a public
release.

The details of how all this is performed are beyond the
scope of this paper, and similar techniques can be found in
other literature [2]. However, an important aspect to
making this rather complex usage of an SCM system work
has been the introduction of a set of customized scripts
designed to ease the process for developers - many of who
are not computer scientists by training, and simply want
an SCM system to stay out of their way. By providing
these scripts to encapsulate our process, we help make
sure that developers don't "cheat" by doing an end around
to avoid repetitive or onerous tasks. But it also helps that
they find SCM something simple to use, unobtrusive, and
ultimately indispensable.

5. Risk-Based Software Quality Assurance

Our lab is nearly completed drafting its "Institutional
Software Quality Assurance Policy", which is designed to
cover all software projects on site. As a U.S. Department
of Energy (DOE) National Laboratory, we have a terrific
range of software development going on in the area of
High Performance Computing ranging from small single
person "research codes", to larger scale simulation codes
being used for U.S. nuclear stockpile stewardship. How
can an institutional policy apply to such a wide array of
projects? And how can we ensure our researchers that
they won't be swept up into a frenzy of CMMi [3]
standardizations?

We believe the answer lies in applying a risk-based
approach to SQA. In our institutional policy, we have
outlined a rather simple questionnaire designed to help
each project determine its risk level: low, medium, or
high. These levels are determined by investigating a
combination of consequences of software failure, and
likelihood of failure. The details are not important, but

high risk roughly maps to great loss of money, reputation,
or human life. Low risk maps to inconsequential results
of failure such as inconvenience to the user. Mid risk
obviously falls somewhere in between, and applies to a
great number of long term funded projects.

Once the level of risk for a project has been determined,
our policy goes on to suggest a level of formality for a
series of standard SQA topics. For example, a low risk
project may only need to perform requirements
management on an informal, ad-hoc scale. While a high
risk project is expected to conform to more formal
standards as appropriate.

The policy does not go so far as to prescribe how any of
the suggested methods should be applied. It has long been
the understanding at our laboratory that one size does not
fit all, and that prescribing anything as a mandate (be it a
tool, method, or process) will result in push back from the
staff. The only requirements issued by the policy are that
each project must do the risk analysis to determine their
level of risk, and they must reassess their risk at regular
intervals. (ie - a project that starts out as a low-risk
research project may eventually find itself being used for
safety analysis, and thus mid or high risk).

6. Metrics for Expected CPU Performance

Any HPC project will ultimately be expected to quantify
their performance on whatever hardware the funding
institution has purchased. Given that percentage of peak
performance is not a good metric on which to base the
success or failure of a particular code to optimally use
architecture, we have done some very preliminary work to
help us understand what sort of performance we might
expect from a given CPU architecture.

For example, consider the IBM Power3 CPU, which has a
peak speed of 1.5 GFlops. In order for a code to obtain
this peak performance, it must issue two fused floating
point multiply-add (FMA) instructions every cycle, for a
total of 4 flops per cycle (4 x 375 MHz = 1.5 GFlop).

What if your application is not able to issue 100% FMA
instructions, but is reliant on regular add and multiply
instructions? What if it can’t feed the CPU with data fast
enough to issue two floating point operations per cycle?
What if your code is dominated by integer calculations?
Obviously the answer is you’ll get much lower than peak.
But what can we expect?

To help answer this question, we took measurements from
several of our codes using the freely available PAPI [4]
tool. For this study, we focused on two primary metrics:

UCRL-CONF-203192

1) the floating point instruction mix (the percentage of
floating point instructions that were FMA instructions),
and 2) the computational intensity, or the number of
floating point instructions issued per memory access.

Given just these two algorithmic characteristics of our
code, we then devised a very simple model which helped
us put an upper bound on expected performance from the
Power3 architecture. With this model, we were able to
show that assuming the metrics collected are a given (i.e.
we can’t change the instruction mix or computational
intensity, at least not dramatically) we could expect
anywhere from 16% to 37% as an upper bound on
performance for the Power3. This did not yet even take
into account other factors such as cache misses, integer
instructions, branch mispredictions, etc…

Given this model, it was much easier to go to our
reviewers and show that although we were only getting
approximately 10% of peak CPU performance on this
architecture – we were within striking distance of this
theoretical upper bound.

7. Software Architecture and Refactoring

A sound software architecture is clearly key to the
longetivity of a software project which is constantly
undergoing changes in requirements. Although we do not
claim to have the most modern or robust architecture in
the HPC world, we are slowly improving on our legacy
code roots by incrementally introducing new and
improved data structures, programming languages, 3rd

party libraries, etc…

Although we don’t feel like we have any particularly
special magic for managing this sort of process, we are
staunch believers in disciplined restructuring and
rewriting of code for the sake of improving the underlying
architecture. A key element of this technique (often
referred to as refactoring) is that management must accept
that a potentially long period of time may be spent in this
process with no obviously apparent benefit to the end
user. In other words, when refactoring is done – no new
features will have been added to the software that would
be immediately observable. Of course, longer term –
good refactoring will add extensibility to the code and
allow for changing requirements to be easily implemented
without layering “hack upon hack”.

This sort of “rebuilding the plane while in flight” makes
for difficult project management, and begs for several of
the techniques outlined elsewhere in this paper. In
particular, a good regression test suite is essential if one is
going to make substantial changes to the software

architecture with the expectation that answers should not
change. Likewise, some sort of multi-branch development
that isolates potentially disruptive changes from a stable
version of the code that users are relying on is highly
desirable.

In the past, the problem of codes “collapsing under their
own weight” was often solved by performing a large
rewrite. While this model worked well in the past, many
projects are now much more complex (3D, multiphysics,
highly parallel, etc…) and as such, we cannot afford to
simply rewrite them every 5-10 years. Some codes are
now expected to last decades, and as such – a positive
attitude toward refactoring is an important project
management consideration.

8. Other Useful Metrics

In our never-ending quest to improve our software
processes (not to mention prepare ourselves for the
inevitable SQA audit!), we are currently investigating
other metrics that we believe will hold some promise. We
are also finding new ways to apply metrics we have
gathered all along in new ways.

Test function coverage data is something that we have
been gathering for quite some time, and it has been useful
in determining where our various test suites are lacking.
Likewise, it has been useful in helping us design our
smoke test suite in that we can easily sort our entire suite
of problems on a chart with function coverage on one axis
and runtime on another. By doing this, we can quickly
determine a set of tests which will give us the most “bang
for the buck”, or the most coverage in the shortest amount
of time. (Recall that a critical requirement of our smoke
test was a short execution time, as it determines the rate at
which developers can update our mainline branches).

Code complexity, as determined through static analysis
tools such as McCabe QA[5], is something else we are
beginning to use in a new process. Although we have
gathered various complexity metrics from McCabe
through the years, they were often used primarily as a way
to target coding for refactoring. Now we are looking into
using these metrics in combination with our test coverage
metrics to improve our test suites. The idea is to make
sure that the most complex parts of the code are exercised
more often.

The final metric we will discuss here is the “user
satisfaction” metric. Gathered through an interview
process by either the project management, or the teams’
SQA authority, this involves a simple questionnaire with a
“rate this 1 to 10” section covering several high level

UCRL-CONF-203192

areas such as reliability, usability, flexibility, support,
etc…

User satisfaction is really what doing good software
engineering is all about, is it not? But how often do we
quantitatively ask our users how they think we’re doing?
This metric is almost too obvious, yet we found that we
were pioneers in using it, at least in our circle of projects.

Our first round of surveys did not lead us to any surprises
in that we scored reletively lower in areas where we
suspected our users would have reason to score us low.
But the real value in this metric may not become apparent
for another several years when we can begin to detect
trends over time.

Of course, in order for this sort of metric to be statistically
valuable, one must choose a representative set of users.
This includes both the happy users, and the perpetually
angry users!

9. Conclusion

Developing software in the world of high performance
computing is unique and distinct from industry standards.
We often have ill-defined and changing requirements,
developers with a lack of expertise in software
engineering, customers who are either themselves
developers or sit right down the hall, as well as other key
differences. Each HPC project needs to consider carefully
what software quality engineering processes they will put
in place, with a goal toward making their lives easier, and
making the end customers happy.

Although we don’t claim to have all the answers, we do
have a relatively large HPC software project that has
managed to pick and choose (and sometimes self-
discover) software engineering concepts that have proven
most valuable to us. The most valuable metric however,
is one that probably cannot be easily measured: the sense
from the development team that it is working well
together, and the users are happy with the results.

Some of our most valuable processes have come from
conversations with distant colleagues in conversations that
started out like “We have a problem with process X, how
do you deal with that?” It is rare that a process torn from
the pages of a software engineering textbook has proven
valuable to us. We hope this paper serves as guidance for
perhaps other groups beginning to struggle with growing
pains. Likewise, we hope to learn from other groups what
they consider to be their best practices so we can steal
them for ourselves!

10. References

[1] http://hdf.ncsa.uiuc.edu/HDF5

[2] “Software Configuration Management Patterns:
Effective Teamwork, Practical Integration”, Stephen P.
Berczuk, Addison-Wesley, 2003.

[3] http://www.sei.cmu.edu/cmmi

[4] http://icl.cs.utk.edu/papi

[5] http://www.mccabe.com/iq_qa.htm

